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1 Motivating Problems and Ideas

The aim of this course is to provide a set of tools to address various new types of question. To get a

sense for the type of problem to be addressed, we give two fairly simple examples of questions which

can be methodically answered using techniques developed in this course.

Problem 1.1. Find the curve of shortest length joining two points in a plane.

This question is generally easily answered in Euclidean space - it is a straight line. However, how

to develop a simple way of answering such a question may not be immediately obvious, especially if

we then introduce some new distance metric onto the space.

Problem 1.2 (Dido's problem). Find the curve y = y (x) of some pre-speci�ed length l ∈ (2a, πa]

such that y (±a) = 0 which gives the maximum area beneath the curve.

This question has something in common with the previous problem - we have �xed end-points, and

a fairly complicated (integral) property to optimize by choosing an appropriate function. However, it

is a classical Greek problem, and indeed admits comparatively simple methods to solve it, giving the

answer to be the unique arc of a circle passing through (±a, 0) which has the desired length l. But again

we can imagine that a simple generalization or change of this problem might make it unapproachable

using more elementary methods.

We will develop a systematic way of obtaining solutions to this type of problem by showing any

solution must satisfy a speci�c di�erential equation. The underlying concept is analogous to the

relationship in basic calculus between stationary points ∇f (x) = 0 and minimizing or maximizing

f (x), but instead of a normal vector x we have a function1 y, and we want to have some entity I [y]

which acts on the function to give us the quantity to optimize.

De�nition 1.3. A variable I [y] which assigns a scalar to a function is called a functional. (There-

fore, it is a special type of operator, something which assigns another vector to a vector.)

Example 1.4. In 1.2, the area is

A =

ˆ a

−a
y (x) dx

and the (�xed) length is

L =

ˆ a

−a

√
1 + y′2dx

Both A[y] and L [y] are functionals.

Remark. Note that we are allowed to use derivatives of the function in calculating the scalar - L = L [y]

is an integral involving y′. In general, we can perform any operation on the argument, so long as we

agree only to apply them to functions for which the functional is de�ned.

1In fact, a function is just an element of a vector space of functions, so actually in some sense the function is a normal
vector. However, such a space is much larger in some sense than the usual Euclidean vector spaces Rn or Cn (in fact,
it is in�nite dimensional) so there is a conceptual di�erence worth noting.
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The class of problems arising from functional constraints and particularly functional quantities to

optimize is called the calculus of variations, and forms a key part of this course.

To clarify what is meant by the above statement about using relationship between stationary points

and extreme points, consider the following problem.

Problem 1.5. Show there exists a real number x ∈ R such that x+ x9 = b for any b ∈ R.

This problem could be addressed straightforwardly using methods from analysis, applying the

intermediate value theorem to the continuous function x + x9. However, we are interested in a more

sophisticated approach which will come in useful in problems less tractable by basic analysis.

We construct the function f (x) = x2

2 + x10

10 − bx, so that f ′ (x) = x + x9 − b; we want to show

f ′ (x) = 0 for some x. We know that if we can �nd an extreme point of f , we are done.

But clearly f → +∞ as x→ ±∞, and on any bounded interval f attains its minimum, so therefore

taking an interval such that f (x) ≥ 1 outside, inside f must have its minimum at a stationary point,

as f (0) = 0 < 1.

This is referred to as the Direct Method for variational problems.
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2 Functions on Finite-Dimensional Real Spaces

2.1 Partial Derivatives

We begin by considering functions f : Rn → R.
We write elements in the domain as x =

∑
xjej = (x1, · · · , xn), so that ej = (0, · · · , 1, · · · , 0). We

shall denote the norm of a vector by ‖x‖ =
(∑

x2
j

)1/2
.

De�nition 2.1. L : Rn → R is linear if L (αV + βW) = αL (V) + βL (W) for all α, β ∈ R and

all V,W ∈ Rn.

It follows from this de�nition that

L (x) =
∑

xiL (ej) =
∑

Ljxj = L · x

where we de�ne L = (L1, · · · , Ln) = (L (e1) , · · · , L (en)).

A function f : Rn → R is di�erentiable at x if it can be well approximated by a linear function L

near x in the sense that

f (x + v)− f (x)− Lv = o (‖v‖)

or equivalently, ∀ε > 0 ∃δ > 0 such that

0 < ‖v‖ < δ =⇒ |f (x + v)− f (x)− Lv| < ε ‖v‖

It is reasonably clear that in the case n = 1 this is identical to the ε -δ formulation of di�erentiability

familiar from one-dimensional analysis.

Now we investigate partial derivatives - in the above de�nition, put v = tej . Then we obtain the

one-dimensional case, and so if f is di�erentiable at x then

lim
t→0

f (x + tej)− f (x)

t

exists and is �nite, and is equal to Lej = Lj by the linearity of L.

Proposition 2.2.

(i) If f is di�erentiable at x, then the partial derivatives ∂f
∂xj

exist, and the linear map L approxi-

mating f is

L =

(
∂f

∂x1
, · · · , ∂f

∂xn

)
= ∇f (x)

(ii) If all partial derivatives exist, and are continuous on Rn, then f is di�erentiable at each x ∈ Rn,
and

L = ∇f (x)

We have established the �rst rule - the second rule is established in a multi-dimensional analysis

course (Analysis II).
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Remark. Continuity throughout Rn (or at least some suitable domain within it) is required for f to

be totally di�erentiable. It is worth noting that for f : R2 → R that, even if all directional derivatives

exist, f is not necessarily di�erentiable, or even continuous: consider

f (x, y) =


xy

x2+y2 x2 + y2 6= 0

0 x = y = 0

for an example.

We will de�ne the following useful notation:

De�nition 2.3. C1 (Rn;R) is the set of real valued, continuous functions on Rn all of whose

partial derivatives are continuous on Rn.
Similarly, Cr (Rn;R) has continuous partial derivatives up to order r.

It is a well-known result which in some ways underlies the entirety of this course that extrema are

always critical points, as expressed by the following lemma:

Lemma 2.4. If f (x) ≥ f (y) for all y ∈ Rn then

∇f (x) = 0

whenever f ∈ C1.

This is the �rst-order necessary condition for a global maximum. Minima have the same condition,

whilst for a local extremum the quali�cation becomes `for all y in some ball2 about x'.

For more advanced conditions, we turn to higher-order derivatives.

2.2 Second Order Conditions for Extrema

In one dimension, we are familiar with the idea that if the second derivative f ′′ is strictly positive at

a stationary point, then that means that the slope is increasing in either direction, so the point is a

minimum of f , whilst if f ′′ < 0, this is a maximum.

For the multidimensional case, it seems clear that if the slope is increasing is all possible directions,

then the point is a minimum (similarly for maxima). But for a function f : Rn → R, this is essentially
saying that the matrix of second-order partial derivatives

∂2f

∂xi∂xj

never reverses a vector which it acts on - i.e. when one moves away a small amount, f is increasing in

the direction you went. This leads to the following de�nition:

2A ball about y of radius r is By (r) = {a ∈ Rn : |y − a| < r}.

6



De�nition 2.5. A real, m×m symmetric matrix Aij is positive de�nite, A > 0, if

vTAv =
∑
i,j

Aijv
ivj > 0

for all vectors v 6= 0 in Rm; it is positive semi-de�nite, A ≥ 0, if the inequality is not strict.

Negative (semi-)de�nite matrices are de�ned in much the same way.

Remark. The notation
∑
i,j Aijv

ivj is essentially equivalent to writing
∑
i,j Aijvivj - the signi�cance

of the superscripts is due to tensor properties called valence which need not concern us here.

It is worth noting that the generalization of this notion to complex spaces involves requiring A = A†

to be Hermitian, and taking v†Av > 0 etc. (These matrices in fact correspond to positive-de�nite

symmetric bilinear or sesquilinear forms for the real and complex cases respectively.)

One very useful way of thinking about positive (semi-)de�nite matrices is in terms of their eigen-

values. It is left as an exercise to show the following:

Exercise 2.6. Show a symmetric matrix is positive semi-de�nite ⇐⇒ all its eigenvalues are greater

than or equal to 0. Similarly, show A is positive de�nite ⇐⇒ all its eigenvalues are strictly positive.

Theorem 2.7. If f ∈ C2 (Rn) and ∇f (x) = 0, then

(i) if x is a local minimum or maximum, then the matrix Aij = ∂2f
∂xi∂xj

is positive semi-de�nite or

negative semi-de�nite respectively.

(ii) if Aij = ∂2f
∂xi∂xj

is positive or negative de�nite, then x is a strict local minimum or maximum

respectively.

Remark. A strict local minimum x0 is a point such that, in some su�ciently small open sphere (of

strictly positive radius) around x0, there is no point such that f takes on even the same value.

Note that if f ∈ C2 (R) is a function de�ned on the real line, and f ′ (x0) = 0 and f ′′ (x0) > 0, then

f has a strict local minimum at x0. It follows, in fact, that if x0 is the only stationary point, then it

is the global minimum, by Rolle's Theorem3.

In Rn for n ≥ 2, however, there are in fact C2 (Rn) functions with only one stationary point which

is a strict local minimum but not a global minimum.

2.3 Convexity

However, one class of functions does in fact have very nice properties in terms of determining global

minima.

3Rolle's Theorem states that if a di�erentiable function R→ R takes equal values at two points, its derivative is 0 at
some intermediate point (Analysis I). So if f (x0) = f (y), then there is a stationary point in (x0, y) - hence by continuity
of f the function is either strictly larger or strictly smaller than f (x0) at all other points. The sign of f ′′ (x0) then
indicates whether x0 is a global minimizer or maximizer (via an application of Taylor's Theorem).
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De�nition 2.8. A set S ⊂ Rn is convex if whenever x,y ∈ S, and θ ∈ (0, 1),

θx + (1− θ)y ∈ S

A function f : Rn → R is convex if similarly

f ((1− θ)x + θy) ≤ (1− θ) f (x) + θf (y)

It is strictly convex if and only if this is a strict inequality.

It is important to note that (1− θ)x+θy must be in the domain of the function f for this de�nition

to make any sense. Therefore, in the case of a function f : D → R where D ⊆ Rn, f can only be

convex if the set D on which it is de�ned is a convex set.

Remark. The epigraph is the set of points which lie above the graph of the function, as shown in Figure

2.1; i.e.

Ef = {(z,x) : z ≥ f (x)} ⊂ R1+n

Figure 2.1: The epigraph of a (non-convex) function f : R2 → R

It can be shown that Ef is convex if and only if f is convex. One can also verify that if all of the

line cuts (vertical cross-sections in the R2 → R case shown) of the form g (s) = f (x + sv) are convex,

then f is also convex.

A function f is concave if and only if (−f) is convex.

Proposition 2.9. If f ∈ C1 (Rn), then the following are equivalent:

(i) f is convex

(ii) f (y) ≥ f (x) + ∇f (x) · (y − x) for all x and y

(iii) [∇f (x)−∇f (y)] · (x− y) ≥ 0

Proof.

(i) =⇒ (ii): Let H (t) = (1− t) f (x) + tf (y)− f ((1− t)x + ty) ≥ 0. Note H (0) = 0, so Ḣ (0) ≥
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0. Then

Ḣ (0) = lim
t→0+

H (t)−H (0)

t

= −f (x) + f (y)− (y − x) ·∇f (x)

≥ 0

(ii) =⇒ (i): We have

f (y) ≥ f (z) + ∇f (z) · (y − z)

f (x) ≥ f (z) + ∇f (z) · (x− z)

and therefore

(1− t) f (y) + tf (x) ≥ (1− t+ t) f (z) + ∇f (z) [(1− t) (y − z) + t (x− z)]

= f (z)

where z = (1− t)y + tx.

(ii) =⇒ (iii): Add

f (y) ≥ f (x) + ∇f (x) · [y − x]

f (x) ≥ f (y) + ∇f (y) · [x− y]

(iii) =⇒ (ii): Left as an exercise.

It is perhaps worth developing some intuition about the latter two equivalent statements. The sec-

ond states that the function always lies above all of its tangent planes; the third part is a generalization

notion of the derivative being monotone non-decreasing.

Proposition 2.10. f is convex ⇐⇒ f lies above all of its tangent planes ⇐⇒ ∇f is `monotone

non-decreasing' in the generalized sense de�ned above (i.e. along any path). The same results hold

with strict inequalities.

Proof. Left as an exercise. (This is not totally immediate.)

Corollary 2.11. If f ∈ C1 (Rn) with stationary point x then x is a global minimizer for f if f is

convex.

Proof. Follows directly from the second part.

Recalling the above, we saw ∇f (x) = b could possibly be solved by minimizing f (x)− b · x.
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Corollary 2.12. If f ∈ C1 is strictly convex, then

∇f (x) = b

has at most one solution.

Proof. If there were two solutions, ∇f (x)−∇f (y) = 0, a clear contradiction to the third part of

the proposition.

All of the above can be trivially repeated for concave functions.

Lemma 2.13. If f ∈ C2 (Rn) then

(i) f is convex ⇐⇒ ∂2f
∂xi∂xj

≥ 0 for all x

(ii) If ∂2f
∂xi∂xj

> 0 for all x =⇒ f is strictly convex.

Remark. The implication in the latter statement cannot be reversed; consider f (x, y) = x4 + y4.

Proof.

(i)⇐=: First, we write

∇f (x)−∇f (y) = [∇f (u)]
x
y

= [∇f (y + t (x− y))]
1
0

=

ˆ 1

0

d

dt
∇f (y + t (x− y)) dt

where we have used the fundamental theorem of calculus in the last step. Then, using

the chain rule and the fact that the matrix of partial derivatives ∂2
ijf ≥ 0, we have

[∇f (x)−∇f (y)] · (x− y) =

ˆ 1

0

d

dt
∇f (y + t (x− y)) · (x− y) dt

=
∑
i

ˆ 1

0

d

dt

∂

∂xi
f (y + t (x− y)) (xi − yi) dt

=
∑
i

ˆ 1

0

∂2

∂xj∂xi
f (y + t (x− y)) (xi − yi) (xj − yj) dt

≥ 0

(i) =⇒ : Exercise.

(ii) =⇒ : Exercise.
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Example 2.14. Show that the entropy of the probability distribution P = (P1, · · · , Pn) given by

S (P1, · · · , Pn) = −
∑

Pi lnPi

is concave, where 0 ≤ Pi ≤ 1 for all i, and
∑
Pi = 1.

Consider (1− t)p + tq, where p,q are both probability distributions on {1, 2, · · · , n} and t ∈
[0, 1]. This is also a probability distribution on the given set, since (1− t) pi + tqi ∈ [0, 1] and∑

i

[(1− t) pi + tqi] = (1− t) + t = 1

Hence S is de�ned on a convex set.

Then, calculating the Hessian at p,

∂2S

∂Pi∂Pj
=


∂2S
∂P s

1

. . .
∂2S
∂P s

n

 =


− 1
P1

. . .

− 1
Pn


noting ∂

∂p (−p ln p) = −1− ln p and ∂2

∂p2 (−p ln p) = − 1
p < 0, so clearly all eigenvalues are negative,

and the map is concave.

2.4 Constraints and Lagrange Multipliers

A common, fairly simple, problem arising in the �eld of variational principles but which demands a

more advanced method than that taught at A-level is maximization subject to a constraint. We write

the most simple case as a requirement to maximize some function f (x, y) subject to the constraint

C = {(x, y) : g (x, y) = 0}

Example 2.15. Maximize f (x, y) = x+ y where the point (x, y) lies on the unit circle. We de�ne

g (x, y) = x2 + y2 − 1. This clearly has the maximum value 2√
2

=
√

2 at x = y = 1√
2
. Clearly, the

derivative ∇f =

(
1

1

)
is not zero. But notice ∇f is perpendicular to the constraint line (i.e. the

circle) at this point.

Similarly, if we attempted to maximize, say, f (x, y) = y2, we would get maxima at

(
0

±1

)

and then ∇f =

(
0

2y

)
is also perpendicular to the constraint line as this point. The minima, at(

±1

0

)
would give ∇f = 0 as f = 0 here which is an unconstrained minimum - this is also trivially

`perpendicular' to the constraint line.
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To see why this holds, parametrize C as (x (t) , y (t)) = (cos t, sin t). Then φ (t) = f (x (t) , y (t)) =

(sin t)
2
.

At φ's maxima, then, t = π
2 ,

3π
2 , we must have dφ

dt = 0. Applying the chain rule,

dφ

dt
= ∇f ·

(
ẋ (t)

ẏ (t)

)
= 0

But

(
ẋ

ẏ

)
is precisely the tangent to C, so dφ

dt = 0 is precisely equivalent to ∇f being normal to C.

Two ways of interpreting this follow:

(i) If ∇f is not perpendicular to the constraint line at x, then there is a nearby point x+ δx in the

constrained region, where δx has some positive component in the direction of ∇f , so ∇f ·δx > 0.

Then f (x + δx) = f (x) + ∇f · δx + O
(
‖δx‖2

)
> f (x) for all su�ciently small δx, so f (x) is

not a local maximum. A similar argument applies to minima.

(ii) If one draws the constraint line g = 0 and then adds contours f = constant gradually decreasing

the constant from +∞ to −∞, the maximum value of f on the constraint line will �rst be

achieved when the contour just touches (i.e. is tangent to) the line g = 0. But this is exactly

equivalent to ∇f being perpendicular to the line g = 0 at this point.

This in fact allows us to deduce a �rst-order necessary condition for a stationary point.

Theorem 2.16 (First-Order Necessary Condition). Let f, g ∈ C2 (Rn) and ∇g (x) 6= 0 for all x.

Let the constraint set C = {x ∈ Rn : g (x) = 0}, which we assume admits some parametrization.

Then if f |C has a maximum or minimum at x0,

∇ [f (x)− λg (x)]x0
= 0

for some λ.

Remark. The restriction that ∇g (x) 6= 0 actually implies, via the inverse function theorem, that the

set C is locally a hypersurface, and hence that it can be parametrized as will be assumed below. (In

fact, we technically only require that the local extremum x0 is a regular point of the constraint.)

Proof. Give the constraint set C the parametrization x = v (t1, · · · , ts), then if we �nd a point

x0 = v
(
t01, · · · , t0s

)
where the C1 function has (without loss of generality) a maximum on C, so that

f (x0) = max
x∈C

f (x)

12



and then φ (t1, · · · , ts) = f (v (t1, · · · , ts)) has an unconstrained maximum at these
(
t01, · · · , t0s

)
.

Hence [
∂φ

∂tj

]
(t01,··· ,t0s)

= 0

∇f (x0) ·
[
∂v

∂tj

]
(t01,··· ,t0s)

= 0

This is precisely the statement that the gradient of f is orthogonal to all the tangent vectors of

the constraint set (which is a hypersurface).

We can choose to think of this as stating that the derivative ∇f (x0) is parallel to ∇g (x0). In

this case, we can �nd some λ such that

∇f (x0) = λ∇g (x0)

∇f (x0)− λ∇g (x0) = 0

∇h (x, λ) = 0

Here, λ is the Lagrange multiplier, and h (x, λ) = f (x) − λg (x) is the augmented (Lagrange)

function - this new function h has stationary points at the constrained extrema of f .

Remark. Note that h = f everywhere on the constraint set.

We give another example, choosing one which may be solved with other methods for clarity.

Example 2.17. Find the rectangle inscribed in the unit circle with the largest possible area. Note

that a rectangle inscribed in a circle is entirely speci�ed by a single point on the circumference and

a rotation. So we can without loss of generality consider a rectangle speci�ed by a point (x, y), as

shown in Figure 2.2.

Figure 2.2: An example of a rectangle speci�ed by the point (x, y).

We maximize (without loss of generality) the signed area A = 4xy respecting the constraint
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x2 + y2 − 1 = 0. This has the augmented function

h (x, y, λ) = A− λg

= 4xy − λ
(
x2 + y2 − 1

)
∇h = 0

Then

∂h

∂x
= 4y − 2λx = 0

∂h

∂y
= 4x− 2λy = 0

∂h

∂λ
= x2 + y2 − 1 = 0

with the last equation giving the constraint equation (as it always must). Then it follows that

y = 1
2λx and x = 1

2λy, so λ = 2.

Then we have 4y − 4x = 0, so using the last equation we get x = y = ± 1√
2
. (Note that x = 0,

y = 1 and vice versa gives a minimum of the constrained f .)

Here is another example, using the idea of entropy from 2.14:

Example 2.18. Find the �nite probability distribution with the highest entropy.

We wish to maximize S (p) = −
∑
pi ln pi, subject to the constraint

∑
pi = 1 (although we also

require p ∈ [0, 1]):

h = −
∑

pi ln pi − λ
(∑

pi − 1
)

∂h

∂pi
= − ln pi − 1− λ

= 0

from which it follows that any stationary point (with arbitrary pi) is located at p1 = p2 = · · · = pn.

This gives the solution pi = 1
n .

Since S is convex, we may expect this to be a maximum, and in fact it is - but this is not in

general necessarily true.

We can consider necessary conditions for maxima and minima too:

Theorem 2.19 (Second-Order Necessary and Su�cient Conditions). If the restricted function f |C
has an extremum at x0, and f, g ∈ C2

(i) the Hessian

Hij =

[
∂2h

∂xi∂xj

]
x0

=

[
∂2 (f − λg)

∂xi∂xj

]
x0
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is negative semi-de�nite on the tangent space4 at a maximum and positive semi-de�nite on the

tangent space (Hij ≥ 0) at a minimum;

(ii) if Hij is negative de�nite on the tangent space, then x0 is a strict local maximum, and if Hij

is positive de�nite on the tangent space, then x0 is a strict local minimum.

Proof. Note:

∂2φ

∂tj∂ti
=

∂

∂tj

(
∇f (v (t)) · ∂v

∂ti

)
= ∇f (v (t)) · ∂2v

∂tj∂ti
+

∂

∂tj

(
∂f

∂xk

)
∂vk
∂ti

= ∇f (v (t)) · ∂2v

∂tj∂ti
+

∂2f

∂xl∂xk

∂vl
∂tj

∂vk
∂ti

and assuming we are at a stationary point,

∂2φ

∂tj∂ti
= λ∇g · ∂2v

∂tj∂ti
+

∂2f

∂xl∂xk

∂vl
∂tj

∂vk
∂ti

But v (t) ∈ C, so we can di�erentiate the constraint to get 0:

g (v (t)) = 0

∂g (v (t))

∂xk

∂vk
∂ti

= 0

∂g (v (t))

∂xk

∂2vk
∂tj∂ti

+
∂2g

∂xl∂xk

∂vl
∂tj

∂vk
∂ti

= 0

Hence we can write (for stationary points)

∂2φ

∂tj∂ti
=

(
−λ ∂2g

∂xl∂xk
+

∂2f

∂xl∂xk

)
∂vl
∂tj

∂vk
∂ti

=
∂2h

∂xl∂xk

∂vl
∂tj

∂vk
∂ti

The results then follow on application of the standard second-order tests for the function φ (t)

- the left-hand side is the Hessian for φ in all of its parameters, and the RHS is the Hessian of h

acting on vectors from the tangent space, the space of vectors of the form ∂v
∂ti

.

It is important to note that this result is di�erent from the unconstrained version, precisely because

of the restriction to the constraint-speci�ed subspace, as one might expect.

4That is, yTHy ≤ 0 for vectors in the set {y : ∇g (x0) · y = 0}, which is called the tangent space because all vectors
in it are tangents to the constraint set. As an aside, we can note that tangent spaces can in fact be generalized to some
other (`nice') metric spaces to begin the study of di�erential geometry.
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Remark. Recall that we can formally test if a matrix is positive de�nite (and so on) by �nding its

eigenvalues - and its eigenvectors if we need to know what space they are acting on - and then checking

that the relevant eigenvalues are strictly positive (and so on). A shortcut for real, symmetric matrices

(or more generally Hermitian matrices) is Sylvester's criterion, which considers the signature formed

by �nding the signs of the determinants of the principal minors - the top-left 1×1 matrix, 2×2 matrix,

and so on, up to the matrix itself. If the sequence is + + · · ·+ then the matrix is positive de�nite; if

it is −+−+ · · · then it is negative de�nite.

Example 2.20. Recall the example of maximizing x + y subject to x2 + y2 = 1. Here, h =

x+ y − λ
(
x2 + y2 − 1

)
and so

∂h

∂x
= 1− 2λx

∂h

∂y
= 1− 2λy

∂2h

∂xi∂xj
=

(
−2λ 0

0 −2λ

)

The stationary points are at

(x, y, λ) =

(
1√
2
,

1√
2
,

1√
2

)
,

(
− 1√

2
,− 1√

2
,− 1√

2

)
which clearly demonstrates that the �rst is a maximum and the latter a minimum, since the matrix

is diagonal and hence has its eigenvalues as the diagonal entries.

In general, of course, the matrix is not diagonal:

Example 2.21. Recall maximizing A = 4xy subject to x2 + y2 = 1. In this case, we have

h = 4xy − λ
(
x2 + y2 − 1

)
and then

∂h

∂x
= 4y − 2λx

∂h

∂y
= 4x− 2λy

∂2h

∂xi∂xj
=

(
−2λ 4

4 −2λ

)

The stationary points we found to be

(x, y, λ) =

(
1√
2
,

1√
2
, 2

)
,

(
− 1√

2
,− 1√

2
, 2

)
, (0, 1, 0) , (1, 0, 0)

Then for the �rst two points, we have a matrix(
−4 4

4 −4

)
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which has eigenvalues −8 for the eigenvector

(
1

−1

)
and 0 for

(
1

1

)
. So the matrix is overall negative

semi-de�nite. We could go to higher order in the latter direction - but there is no need. This zero

is in the direction along which the value of the constraint equation changes - we could say this

eigenvector lies outside of the relevant tangent space. Any change in x and y must be in the �rst

direction, with eigenvalue −8. Hence the matrix is negative de�nite on the tangent space, and the

point is a local maximum.

Note that in the example of maximizing entropy, we do in fact have ∂2g
∂xi∂xj

= 0 because the

constraint equation g has no `mixed' terms, so the Hessian is the same as that for f , and the fact that

f is concave implies that all stationary points are (local) maxima.

Corollary 2.22. If the constraint equation g satis�es

∂2g

∂xi∂xj
= 0

then stationary points of the constrained function f are of the same nature as would be determined by

inspecting the Hessian for f .

2.5 Legendre Transforms

Transforms form a class of tools very frequently used, particularly by physicists, in order to recast a

problem or piece of information in a new domain. There are various reasons for doing this, the main

ones typically being that the new version of the problem is much easier to solve, or the new encoding of

the information gives some intuitive (possibly physical) insight into its nature. For example, a Fourier

transform can move from describing a signal shape (amplitude as a function of time, f (t)) to describing

the component sinusoidal waves (amplitude as a function of the component frequency, f̂ (ν)) - the same

underlying set of information is encoded by both entities, f (t) and f̂ (ν) (ignoring complications due

to functions whose Fourier transform does not converge and so on), but it is represented di�erently.

The Fourier transform, therefore, is useful when we are not particularly interested in the amplitude of

the wave at any particular point, but are instead interested in the frequency with which components

in the wave are oscillating.

The transform we are going to investigate here, however, is called the Legendre transform, and it is

not concerned with a decomposition in the same way as the Fourier transform is. Instead, is is useful

when it is for some reason preferable to think about the derivative of f than the variable x - again, note

that the current independent variable x is considered to be of less interest than the new alternative

independent variable df/dx. Of course, if we want to have a one-to-one correspondence between the

derivative and x, we need some special condition on f , which it seems natural would be concavity or

convexity, as we need a (strictly) monotone derivative. It turns out that the way we de�ne this map

restricts this to a speci�c class of strictly convex functions.

Remark. We are talking functions of one variable here, but the Legendre transform can be easily

generalized to higher dimensions, as we will see below.
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2.5.1 De�nition and discussion

There are several ways of approaching the de�nition of the Legendre transform, but the standard way

is via the following (not very obvious) equation:

De�nition 2.23. Given a function f : R→ R, we de�ne its Legendre transform f? by

f? (p) = sup
x

[px− f (x)]

wherever this supremum exists.

So how do we arrive at this construction? There is not an immediate satisfactory explanation, but

in this section we will describe a vague approach to deriving it. Do not worry if the discussion seems

unclear, since it simply is.

Imagine for simplicity we have a strictly convex, twice-di�erentiable function f (x) - in fact, we

will eventually need f ′′ (x) > 0 everywhere. Then the derivative is a strictly increasing function of x,

which we will write

p (x) ≡ df

dx

Then in this case, we can already parameterize f by p, because this di�erentiable, monotone

function has an inverse, x (p). We can write g (p) = f (x (p)), which encodes all information in f , but

is parameterized by p, the derivative of f . But in practice, this is not the de�nition we use. There

are several ways of justifying the di�erent de�nition we use, the most natural of which is that this

transform lacks any inherent symmetry.

If we apply the same process to g (p), if this is all still valid, we �nd that

g′ (p) =
d

dp
f (x (p))

= x′ (p) · f ′ (x (p))

= x′ (p) · p

which is not very elegant (even if we apply the inverse function theorem to x′ (p)), and certainly does

not return us to anything like a representation involving x. So consider a new function

h (p) = x (p) p− f (x (p))

h′ (p) = x′ (p) p+ x (p)− g′ (p)

= x (p)

which seems a much nicer result, since applying this process again to h (p) we �nd that if q (p) =
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h′ (p) = x (p) then

h (p (q)) = h (p (x))

= xp (x)− f (x)

p (q) q − h (p (q)) = p (x)x− [xp (x)− f (x)]

= f (x)

so that the Legendre transform is its own inverse in this case! (We have not con�rmed this is valid in

this case either; we will do that below.)

Remark. This property, where it holds, makes the Legendre transformation an involution. The sym-

metry is particularly manifest when we write

f (x) + f? (p) = xp

where it is understood that x = x (p) or p = p (x), since x and p are not independent (they are

conjugate variables under the Legendre transform).

To see how to make the �nal step from f? (p) = x (p) p − f (x (p)) to f? (p) = supx [xp− f (x)],

simply note that at the point x (p),

d

dx
[xp− f (x)] = p− f ′ (x) = p− p = 0

so the term under the sup has a stationary point - in fact, this is the unique stationary point if

f ′ (x) = p has only one solution, as is the case for strictly convex functions. Further, this stationary

point must be a maximum, since xp− f (x) is a concave function of x for �xed p: its second derivative

is just −f ′′ (x) < 0. So the sup is achieved at this point.

The advantage of phrasing the de�nition in terms of this supremum is chie�y that it allows an easy

de�nition for arbitrary f , and that it can be modi�ed in certain ways which we will not address here.

We close this introductory section by stating the generalization to higher dimensions:

De�nition 2.24. Given a function f : Rn → R, we de�ne its Legendre transform f? by

f? (p) = sup
x

[p · x− f (x)]

wherever this supremum exists.

2.5.2 Examples and properties

Example 2.25. Consider the function y = f (x) = ax2 where a > 0. Its Legendre transform is

f? (p) = sup
x

[
px− ax2

]
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Figure 2.3: Transforming f (x) = ax2

The term to be maximized is simply a quadratic (and in fact it is convex), and since a > 0 it

has a well-de�ned maximum at

d

dx

[
px− ax2

]
= p− 2ax = 0

so that x = p/2a. (Note that this is the same as �nding the largest distance by which the line

y = px lies above the quadratic y = f (x), as shown in Figure 2.3.) It follows that the Legendre

transform f? is given by

f? (p) =
p2

2a
− a · p

2

4a2
=
p2

4a

which is another quadratic (and hence also convex). We can verify that

f?? (y) = sup
p

[
yp− p2

4a

]
= ay2

so f?? ≡ f , as we expected.

We will prove this property a more formally than the above in Theorem 2.28 after a few examples of

what can happen when f is not strictly convex:

Example 2.26.

(i) f (x) = ax2 with a < 0, a convex function.

Figure 2.4: Transforming f (x) = − |a|x2

In this case, f? (p) = supx
[
px− ax2

]
is not de�ned for any p since the term in the brackets

grows arbitrarily large as x→ ±∞. Hence the domain of f? = ∅.

(ii) f (x) = 0. Here, supx [px] exists if and only if p = 0, so f? has the domain {0}.

(iii) More generally, if f (x) = ax + b is any line, then supx [px− ax− b] is de�ned if and only if

p = a; then f? (a) = −b.
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This last example is probably the most revealing, in that it suggests a geometrical interpretation

of f? (p) as being −1 multiplied by the y-intercept of the tangent to the graph having the slope p. In

fact, we will use this in the proof of Theorem 2.28.

But �rst, we prove the following proposition hinted at by our initial discussion:

Proposition 2.27. f? (p) is convex on its domain.

Proof. We need the domain to be a convex set for this to be possible.

For any t ∈ (0, 1) and any x we have

t (p1x− f (x)) + (1− t) (p2x− f (x)) = (tp1 + (1− t) p2)x− f (x)

where the left-hand side is bounded above by

t sup
x

(p1x− f (x)) + (1− t) sup
x

(p2x− f (x)) = tf? (p1) + (1− t) f? (p2)

So we have

tf? (p1) + (1− t) f? (p2) ≥ (tp1 + (1− t) p2)x− f (x)

and therefore if p1 and p2 lie in the domain, so does tp1 + (1− t) p2 because the right-hand side is

bounded above. Hence the domain is a convex set.

Further, we can now take suprema to get

tf? (p1) + (1− t) f? (p2) ≥ f? (tp1 + (1− t) p2)

which established the convexity of f? on this set.

We are now ready to prove the following result:

Theorem 2.28. If f ∈ C2 (R) with f ′′ (x) ≥ c > 0 - that is, f strictly convex with a non-zero lower

bound on its second derivative - then f?? = f .

Proof. By the result in Corollary 2.12, the strict convexity of f implies that f ′ (x) = p is satis�ed

by at most one x. Clearly, f? (p) is de�ned for all p, because the expression px − f (x) is concave

with second derivative −f ′′ (x) ≤ c < 0, and is therefore bounded above.

It follows that we can de�ne a function X (p) de�ned uniquely by f ′ (X (p)) = p. So

f? (p) = sup [px− f (x)]

= pX (p)− f (X (p))

Now we turn to the geometrical interpretation of f?. Consider, for some �xed p, the unique
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tangent line to y = f (x) which has slope p. Its equation is

y − f (X (p)) = p [x−X (p)]

y = px− [pX (p)− f (X (p))]

= px− f? (p)

Recall that convex functions always lie above their tangent lines - so f (z) ≥ pz − f? (p) for any

z, and equality is obtained at the point z = X (p). But p is also arbitrary. Thus for a �xed z,

f (z) ≥ pz − f? (p) for any p, and equality is obtained at the point p = f ′ (z).

But then we are done, because f?? is de�ned, at some point z, by

f?? (z) = sup
p

[zp− f? (p)]

= f (z)

Remark. Note f? (p) is precisely the negative of the y-intercept; also, by the above proposition, f? (p)

is a globally de�ned, convex function of p.

One interesting corollary of the above is that f? (p) is C1 (taking the supremum of functions does

not in general preserve even continuity, let alone di�erentiability). This can be seen from from the

geometrical nature of f? (p).

You may be curious about the extra condition we used, that f ′′ (x) ≥ c > 0 for some constant

c. This ensures that the solution goes to in�nity at least as rapidly as any straight line as x → ±∞,

so that the supremum is always well-de�ned. Without this or a similar condition, we can easily �nd

strictly convex functions with no Legendre transform:

Example 2.29. If f (x) = ex then

sup
x

[px− f (x)] = sup
x

[px− ex]

is unde�ned if p < 0. This is because px→∞ as x→ −∞ but ex → 0.

The argument from this theorem has the following corollary:

Corollary 2.30. If f is convex (at least, with f ′′ (x) > c condition), it is the supremum of a family

of a�ne functions (straight lines).

This can also be expressed by saying it is the envelope of such a family - a shape which is tangent

to all elements of the collection.

One way of expressing the symmetry of the Legendre transform is to say that (generally convex)

functions f and g are dual (in the sense of Young) when they are Legendre transformations of each

other. Then

g (p) = sup
x

[p · x− f (x)] ≥ p · x− f (x)
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for any x. From this we can deduce the (generalized, in the case where we use vectors p and x) Young's

inequality :

f (x) + g (p) ≥ p · x

for any x and p.

2.5.3 Physical applications

The �rst example we look at is of extreme importance in theoretical physics, and is of particular

relevance to the formulation of quantum mechanics and quantum �eld theory.

Example 2.31. In simple cases of classical physical problems, we are used to working with forces,

accelerations, velocities and positions. However, this formulation of physical laws is ultimately

deeply tied to the coordinate system we choose, and does not generalize to quantum theory, and

is not convenient for dealing with either special or general relativistic physics. Instead, we usually

work with one of two alternative mathematical setups, called the Lagrangian and Hamiltonian

formulations. The Lagrangian L is de�ned by

L = T − V

= kinetic energy− potential energy

For the classical case, we can write T = T (ẋ) = 1
2mẋ · ẋ for the kinetic energy, and V = V (x)

for the potential energy. Hence we have

L (x, ẋ) =
1

2
mẋ · ẋ− V (x)

The Lagrangian, more generally, can be a function of any generalized coordinates qi, including

angles, or �eld strength, or so on - here, we shall just use position x and its derivative for simplicity.

We shall see the relevance of the Lagrangian to physics in section 3.6.2, when we see the example

of an action principle from which equations of motion can be deduced. What concerns us here is

the relationship between this formalism and the Hamiltonian one. The Legendre transform with

respect to ẋ of the Lagrangian is

L? (x,p) = sup
ẋ

[p · ẋ− L (x, ẋ)]

To calculate this, note that the supremum is achieved at the point when all following the partial

derivatives with respect to ẋ vanish:

∂

∂ẋj
[p · ẋ− L (x, ẋ)] = pj −mẋj = 0
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Hence p = mẋ (that is, the classical momentum) and the transform is given by

L? (x,p) = p · p
m
−
[

1

2m
p · p− V (x)

]
=

1

2m
p · p + V (x)

We can then de�ne the Hamiltonian to be the Legendre transformation of the Lagrangian:

H (x,p) = L? (x,p)

=
1

2m
p · p + V (x)

= T + V

= kinetic energy + potential energy

Note that we write the Hamiltonian as a function of a generalized coordinate and its so-called

conjugate momentum pi. It is easy to show that Newton's equations fall out naturally from the

Hamiltonian in the form of the rules

ẋj =
∂H

∂pj
and ṗj = − ∂H

∂xj

and doing this is left as an exercise.

Remark. These last two equations are called the Hamilton equations, and they can in fact be derived

from Lagrange's equations (though they are sometimes viewed as more fundamental).

The second example is a key application in thermodynamics.

Example 2.32. In thermodynamics, we often assume that we have a gas (with a �xed number of

particles N) governed by its internal energy

U = U (S, V )

where V is the volume it occupies, and S is its entropy5. It is helpful to think of the gas as

occupying a perfectly sealed piston with adjustable volume.

There are several formulae associated with this formulation of thermodynamics - the underlying

de�nitions are

Heat �ow = dq = TdS

Energy change = dU = Heat �ow−Mechanical work done on piston

= TdS − pdV

=
∂U

∂S

∣∣∣∣
V

dS +
∂U

∂V

∣∣∣∣
S

dV
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where we have

T =
∂U

∂S

∣∣∣∣
V

p = − ∂U

∂V

∣∣∣∣
S

From these, we can derive one of the so-called Maxwell relations:

∂T

∂V

∣∣∣∣
S

= − ∂p

∂S

∣∣∣∣
V

Now if the system is immersed in a constant temperature reservoir instead, the system is best

described not by internal energy U but by the so-called (Helmholtz) free energy

F = F (T, V ) = inf
S

[U (S, V )− ST ]

which is the negative Legendre transform with respect to entropy of the fundamental energy

U (S, V ).

The in�mum is attained where the partial derivative with respect to S of the expression in

brackets is zero - that is, at the S such that

T =
∂U

∂S

∣∣∣∣
V

This de�nes S = S (T, V ) and hence we can substitute back to �nd

F (T, V ) = U (S (T, V ) , V )− TS (T, V )

dF = dU − TdS − SdT

= (TdS − pdV )− TdS − SdT

= −pdV − SdT

Hence in the Helmholtz description,

p = − ∂F

∂V

∣∣∣∣
T

S = − ∂F

∂T

∣∣∣∣
V

The associated Maxwell relation is

∂p

∂T

∣∣∣∣
V

=
∂S

∂V

∣∣∣∣
T

Note that S = S (T, V ) is determined implicitly by

T =
∂U

∂S

∣∣∣∣
V
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which determines S uniquely where
∂2U

∂S2

∣∣∣∣
V

> 0

But note that the constant volume heat capacity cV , the heat needed to raise the temperature

by one unit at the �xed volume V , is given by

cV = T
∂S

∂T

∣∣∣∣
V

=
T

∂T
∂S

∣∣
V

=
T

∂2U
∂S2

∣∣
V

so U is convex with respect to S ⇐⇒ we need heat input to raise the temperature, establishing

the validity of our result.

In general, the Legendre transform is used to change between thermodynamic potentials.

5Entropy is one of the hardest quantities to give an intuitive, mathematical de�nition for. Classically, we de�ne it
as a property of a system moving between thermodynamic equilibria: in any process where energy ∆E is surrendered,
and its entropy falls by ∆S, at least T0∆S of the energy passed on will be passed directly to the environment (which is
at the temperature T0) without being used. In statistical thermodynamics, it is a measure of how uncertain the state
of the gas particles is after the macroscopic properties (like temperature, pressure and volume) have been taken into
account: S = −kB

∑
i pi log pi where kB is the Boltzmann constant, and the sum is over all states which the system has

a probability pi of lying in. These are equivalent notions. In an idealized (reversible) change, we can consider entropy
as corresponding to heat loss, hence the relationship dq = TdS.
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3 Calculus of Variations

In this section, we are going to address the other type of problem we discussed in the introduction:

�nding not simply a point, but a function which maximizes or minimizes some property. In order to

do this, we need to have some way of assigning a single value to a function. Maps in this general class

are called functionals:

De�nition 3.1. A functional is a map V → R or C where V is a space of functions.

We will work only with the real case here.

3.1 Examples and Functional Derivatives

Examples of this type of map abound; two classes of example follow:

Example 3.2.

(i) V = C (R), the space of continuous functions of R → R. We might consider the `Dirac

functional' operating at x0 by the map

δx0 : f 7→ f (x0) ∈ R

(ii) V = {f ∈ C∞ : f (x+ 2π) = f (x) ∀x}, the space of smooth, 2π-periodic functions, like

sinx. All functions in V are integrable, because they are continuous, so we can de�ne

I0 [f ] =

ˆ 2π

0

[f (x)]
2

dx

In fact, since all derivatives of smooth functions are continuous, we can de�ne further func-

tionals like

I1 [f ] =

ˆ 2π

0

(
[f (x)]

2
+ [f ′ (x)]

2
)

dx

Now when we went about �nding extrema of a function h (x) in a �nite dimensional vector space

previously, we hit upon the idea of checking that all directional derivatives were 0, so that the point

x was a stationary point. This meant picking a vector v in the space, and seeing that the restricted

function hv (t) = h (x0 + tv) was stationary at t = 0. Can we generalize this?

The answer is yes, in the most natural way possible - remember that a function space can also be

a vector space, albeit one of in�nite dimension, so long as it obeys the basic axioms. If we have a

functional I [f ], then we want to investigate I [f + tφ] where φ (x) is the direction along which we take

the derivative - it is a vector in our space, which makes it another function. What this amounts to is

considering small variations made to f , and seeing what happens as |t| grows from 0. If one of the

gradients
d

dt
I [f + tφ]
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is not zero, then f cannot be a local minimum or maximum for I.

Example 3.3. Consider I0 [f ] de�ned above. Then we have

d

dt
I0 [f + tφ] =

d

dt

ˆ 2π

0

[f (x) + tφ (x)]
2

dx

=

ˆ 2π

0

d

dt
[f (x) + tφ (x)]

2
dx

=

ˆ 2π

0

2φ (x) [f (x) + tφ (x)] dx

where we have used the fact that smooth integrands allow di�erentiation through the integral - note

that φ (x) must be smooth, since the variation functions we are considering lie inside the vector

space. Then the derivative at t = 0 is

d

dt

∣∣∣∣
t=0

I0 [f + tφ] =

ˆ 2π

0

2φf dx

We write

DφI0 [f ] =

ˆ 2π

0

2φf dx

This quantity must be zero for all φ satisfying the conditions of the vector space, just as in the

case of �nite-dimensional vector spaces, when v ·∇h (x) had to be zero for all v in the space for x

to be the location of a minimum or maximum. In that case, it was easy to deduce from this that the

gradient ∇h = 0 at extrema, which meant that we could just check the simple condition that x was a

stationary point as the �rst stage in locating these extrema. We need a way of expressing some kind

of `gradient' for our functional.

Example 3.4. To obtain a generalization of the gradient ∇h (x), we must �rst de�ne an inner

product (that is, a generalization of the `dot' product) on our speci�c vector space of functions -

we can do this by

〈f, g〉 =

ˆ 2π

0

f (x) g (x) dx

where, for complex-valued functions, we would generalize this to

〈f, g〉 =

ˆ 2π

0

f (x)g (x) dx

(or the real part thereof).

Then we can write this very concisely as

DφI0 [f ] = 〈2f, φ〉
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and we can therefore replace the idea of the gradient ∇h (x) with the idea of a functional derivative,

denoted
δI0
δf

= 2f

In general, we de�ne the functional derivative in exactly this manner, though the de�nition of the

inner product 〈·, ·〉 may vary according to which space we are working in:

De�nition 3.5. For a functional I [f ],

DφI [f ] ≡ d

dt

∣∣∣∣
t=0

I [f + tφ] ≡
〈
δI

δf
, φ

〉
where such a function δI/δf exists - it is called the functional derivative of I [f ].

Remark. Any inner product space over R or C is a metric space - if the space is complete (so any

Cauchy sequence of elements converge to a point in the space), it is a Hilbert space. Hilbert spaces

have the property that any linear, continuous L map x 7→ L (x) from the space to R or C has a

corresponding constant y (technically from the dual space) such that 〈y,x〉 = L (x). Since DφI [f ] is

clearly a linear functional of φ.

The inner product de�nitions we will work with will be of the form〈
δI

δf
, φ

〉
≡
ˆ

δI

δf
φdx

where the integral is carried out over some suitable range.

It should not be surprise that not all functionals have such a representation:

Example 3.6. Consider δx0 , the Dirac functional which extracts the value of a function at x0:

Dφδx0 [f ] =
d

dt

∣∣∣∣
t=0

δx0 [f + tφ]

=
d

dt

∣∣∣∣
t=0

(f (x0) + tφ (x0))

= φ (x0)

= δx0
[φ]

Now formally, we cannot write

ˆ
δ (δx0)

δf
φdx = φ (x0)

for any true function δ (δx0
) /δf - in particular, no function in the same function space that the

integral inner product is de�ned on. However, if we adopt the notation of the Dirac delta function,
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so that
´
δ (x− x0) g (x) dx = g (x0) for suitable intervals of intergration, then we can write

δ (δx0)

δf
≡ δ (x− x0)

It may seem like functionals consisting of integrals of derivatives of f , like I1 [f ] =
´ [

f2 + (f ′)
2
]

dx,

should not have such a representation is this form, since the directional derivative would appear to

necessarily involve derivatives of φ. However, importantly, this is not in fact the case:

Example 3.7. Recall the functional

I1 [f ] =

ˆ 2π

0

(
[f (x)]

2
+ [f ′ (x)]

2
)

dx

de�ned on the space of smooth, 2π-periodic functions. Then we have

DφI1 [f ] =
d

dt

∣∣∣∣
t=0

I1 [f + tφ]

=
d

dt

∣∣∣∣
t=0

ˆ 2π

0

(
[f + tφ]

2
+ [f ′ + tφ′]

2
)

dx

=

[ˆ 2π

0

(2fφ+ 2tφ+ 2f ′φ′ + 2tφ′) dx

]
t=0

=

ˆ 2π

0

(2fφ+ 2f ′φ′) dx

which currently does involve φ′. However, we can eliminate this by integration by parts:

ˆ 2π

0

f ′φ′dx = [f ′φ]
2π
0 −

ˆ 2π

0

f ′′φdx

= −
ˆ 2π

0

f ′′φdx

because, by periodicity, f ′ (2π)φ (2π) = f ′ (0)φ (0), so the boundary terms vanish. This gives us

the following expression for the directional derivative:

DφI1 [f ] =

ˆ 2π

0

(2fφ− 2f ′′φ) dx

=

ˆ 2π

0

(2f − 2f ′′)φdx

and it follows that
δI1
δf

= −2f ′′ + 2f

This is typical of how we work with functionals involving integration of derivatives: we eliminate

derivatives of φ via integration by parts, using boundary conditions or periodicity in order to restore the
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purely integral form form of the operator - this generally increases the order of the resulting functional

derivative; that is, we obtain higher order derivatives of f , as in this case, when we obtained a term

in f ′′.

3.2 Euler-Lagrange Equations

In fact, we can derive a much more general rule for integral operators like this. (Note that we now use

the standard notation of y (x) for solution curves, reserving f (x, y, y′) for the integrand.)

Lemma 3.8. Let V =
{
y (x) ∈ C2 [a, b] : y (a) = α, y (b) = β

}
be a space of twice-di�erentiable

functions on [a, b] with �xed endpoints, and let the functional I : V → R be given by

I [y] =

ˆ b

a

f

(
x, y,

dy

dx

)
dx =

ˆ b

a

f (x, y, y′) dx

where f (x, y, y′) has continuous �rst partial derivatives with respect to each of its three arguments.

Then the functional derivative is given by

δI

δy
=
∂f

∂y
− d

dx

(
∂f

∂y′

)

Proof. This is a straightforward application of the same approach that we saw above, with the

slight change that our variation functions φ (x), which still being in C2 [a, b], must have

φ (a) = φ (b) = 0

so that the function y + tφ ∈ V . Then we have

DφI [y] =
d

dt

∣∣∣∣
t=0

I [y + tφ]

=
d

dt

∣∣∣∣
t=0

ˆ b

a

f (x, y + tφ, y′ + tφ′) dx

Now the properties of f we required mean that we can exchange di�erentiation and integration6,

so that by the chain rule we have

DφI [y] =

ˆ b

a

[
φ
∂f

∂y
(x, y, y′) + φ′

∂f

∂y′
(x, y, y′)

]
dx

Then integrating the last term by parts, we have

DφI [y] =

ˆ b

a

[
φ
∂f

∂y
− φ d

dx

(
∂f

∂y′

)]
dx+

[
φ
∂f

∂y′

]b
a

=

ˆ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
φdx
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where the boundary terms now vanish because φ (a) = φ (b) = 0. So �nally,

δI

δy
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
which we can also write as

δI

δy
= fy − fy′x − fy′yy′ − fy′y′y′′

So the question is: how can we use these functional derivatives? By analogy with the �nite-

dimensional case, where ∇h (x) = 0, it seems that the fact that the inner product of the functional

derivative with any suitable φ in some vector space (which may or may not be the same as that which

f lies in) vanishes could mean that δI/δy = 0, giving us a di�erential equation for y. In order to

establish such a rule, we need a lemma very much the following:

Lemma 3.9 (Fundamental lemma of the calculus of variations). If

ˆ b

a

f (x)φ (x) dx = 0

for all smooth functions φ (x) with

φ (x) = 0 for x 6∈ [c, d] ∈ (a, b)

and f is continuous, f ∈ C [a, b], then f ≡ 0 in the interval [a, b].

The idea here is that if we can �nd a general smooth function like that shown in Figure 3.1, which

vanishes outside some arbitrary subinterval of [a, b], and is strictly positive inside it, then by moving

and scaling this shape, we can show that f cannot be non-zero. This is because, by continuity, it would

follow that there was some interval where f > 0 or f < 0, and then multiplying this by our carefully

chosen function φ, we would get a strictly positive or negative result.

Proof. Assume that there is some x0 such that f (x0) = θ 6= 0. Take φ > 0 without loss of generality,

noting that otherwise we can simply consider −f .
Then by the continuity of f , there is some ε > 0 such that |f (x)− θ| < θ/2 for all x with

|x− x0| < ε, so that

f (x) ≥ θ

2
for x ∈ (x0 − ε, x0 + ε)

6The derivative of the integrand is continuous, by assumption, and the interval [a, b] is closed and bounded and
therefore compact - then since continuous functions on compact sets are uniformly continuous, the derivative of the
integrand is uniformly continuous. Therefore, we can interchange the two limiting operations. (This is the Leibniz
integral rule.)
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c da b

Figure 3.1: A bump function

Now consider the function

ψ (x) =

e
−1/(x2−1)

2

x2 < 1

0 x2 ≥ 1

which is motivated by recalling that the function υ (x) = e−1/x2

has all derivatives tending to 0 as

x → 0, and then multiplying ν (x− 1) ν (x+ 1) to form a function which is positive in (−1, 1) but

which can be smoothly joined to the function which is constantly 0 at x = ±1. It can therefore be

shown that this piecewise function is smooth by checking7 that

lim
x→0

ν(n) (x) = 0

for all n, as it follows that the same holds for ψ (x):

lim
x→±1,x2<1

ψ(n) (x) = 0

Now consider the function

φ (x) = ψ

(
x− x0

ε

)
=

0 (x− x0)
2 ≥ ε2

strictly positive (x− x0)
2
< ε2

It is clear that φ (x) satis�es the conditions in the statement of the lemma, and hence we just

note that ˆ
φf dx =

ˆ x0+ε

x0−ε
φf dx ≥ θ

2

ˆ
φ > 0

which is a contradiction. Hence f (x0) = 0.

7This can be done by simply calculating the derivatives of ν, and using the fact that limz→∞ zNe−z = 0 for any N .
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Remark. We can restate the conditions on φ by de�ning the support of a function

suppφ = cl {x : φ (x) 6= 0}

as the closure of the set of points where φ is non-zero. Then we say φ is properly supported in [a, b] or

(a, b) if

suppφ ⊂ [c, d] ⊂ (a, b)

for some c and d. Hence the lemma requires that
´
fφdx over this interval vanishes for all smooth

functions φ which are properly supported in (a, b).

Note also that with the strictly weaker requirement that f ∈ Ck and that the integral vanish for all

Ck functions φ (x) with φ (a) = φ (b) = 0, we could simply take φ = − (x− a) (x− b) f , which satis�es

all the necessary conditions, so that

ˆ b

a

φf dx =

ˆ b

a

− (x− a) (x− b) f2dx = 0

and since the integrand is non-negative, it must be identically zero. Thus f ≡ 0 in (a, b), and if k ≥ 1,

f ≡ 0 in [a, b].

With this lemma, we are now ready to address all the problems we have seen before, according to

the following method:

Solution. The indirect method for �nding a minimizer (without loss of generality) goes as follows:

(i) Assume that a minimizer exists. In our case, assume that there is a a minimizing function

f exists for the functional I [f ] which is of the above form.

(ii) Obtain a necessary condition for such a minimizer. Here, we now have a di�erential equation

for y, since the fundamental lemma implies that δI/δy ≡ 0, or

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

(iii) Show that there exists a solution satisfying this condition. For us, this means solving the

above di�erential equation for a function y (x).

(iv) Show that the solution found is actually a minimizer. In general, it is often clear whether

or not the solution gives a minimum value for I [f ].

We can now apply the above method to some of the problems we originally wanted to study, using

di�erential equations of the form we have deduced:

De�nition 3.10. The Euler-Lagrange equation associated with a functional of the form I [y] =´ b
a
f (x, y, y′) dx obeying the conditions described in Lemma 3.8 is

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0
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It is a clear consequence of the results of Lemma 3.8 and Lemma 3.9 that any admissible stationary

point of the functional I [y] must satisfy this di�erential equation. Hence, the above equation is a

necessary condition for an extremal function. It is not, however, su�cient, which is why we must

check if a solution to the Euler-Lagrange equation is actually the required function.

Example 3.11. Recall Problem 1.1, that of �nding the shortest curve joining two points (a, α)

and (b, β) in Euclidean space.

If we assume that the curve can be parametrized as y = y (x), as a twice-di�erentiable function,

then we can use the Euler-Lagrange equations on

I [y] =

ˆ b

a

√
1 + y′2dx

Since f =
√

1 + y′2 we have

∂f

∂y
− d

dx

(
∂f

∂y′

)
= − d

dx

(
y′√

1 + y′2

)
= 0

This is in fact easy to solve; since f does not depend explicitly on y, we can integrate this once

to �nd that fy′ = constant, and in fact it follows that y′ = constant, so that our solution is

y0 = cx+ d

=
(β − α)

(b− a)
(x− a) + α

Now we must show that this solution is in fact minimizing. A certain property of f = f (y′)

makes this easy: it is convex. You can check that f ′′ (y′) = 1/ (1 + y′)
3/2

> 0. It follows that

f (y′) > f (y′0) + fy′ (y′0) [y′ − y′0]

whenever y′ 6= y′0. Then if y 6= y0,

I [y] =

ˆ b

a

f (y′) dx >

ˆ b

a

[f (y′0) + fy′ (y′0) [y′ − y′0]] dx

≥ I [y0] + (const.)

ˆ b

a

[y′ − y′0] dx

= I [y0]

since y and y0 have the same endpoints. So any other curve has a strictly larger length.

Remark. We will see in section 3.5 that properties like f being independent from x or y lead to

conservation laws.

Here is a slightly more complicated example of converting a problem into a solvable format:
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Example 3.12. An industrial pump uses electricity at a rate r (u) = 10+u units per kilotonne when

pumping water at u kilotonnes per hour; in this remote location, the cost of wholesale electricity

varies signi�cantly over the day, with a price of

c (t) = 169− (t− 12)2

tenths of a penny per unit after t hours (an average of 12.1p). What is the lowest cost that can be

achieved if, over the course of a day, it must pump 100 kilotonnes?

Letting V (t) be the volume pumped after t hours, the total cost is

I [V ] =

ˆ
c (t) r (u) dV

=

ˆ
c (t) r (u)

dV

dt
dt

=

ˆ
c (t) r (u)udt

In this problem the independent variable is t, the function we are working with is V , and u is

its �rst derivative - so in terms of the usual notation we would have had t→ x, V → y and u→ y′.

This has the Euler-Lagrange equation

∂f

∂V
− d

dt

(
∂f

∂u

)
= 0− d

dt
(c (t) [r (u) + r′ (u)u]) = 0

which immediately gives us

c (t) [r (u) + r′ (u)u] = constant

since the function is once again independent of V . Explicitly,

[
169− (t− 12)2

]
[10 + u+ u] = A

u =
A

2 [169− (t− 12)2]
− 5

=
A/2

[13 + (t− 12)] [13− (t− 12)]
− 5

We can integrate this to get

V (t) = B · arctanh

(
t− 12

13

)
− 5t+ C

and the initial conditions give

V (0) = B · arctanh

(
−12

13

)
+ C = 0

V (24) = B · arctanh

(
12

13

)
− 120 + C = 100
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so that

C = 110

B =
110

arctanh
(

12
13

)
You may check that the solution curve

V (t) = 110
arctanh

(
t−12

13

)
arctanh

(
12
13

) − 5t+ 110

is in fact valid (i.e. u = V ′ (t) ≥ 0 at all times). It is depicted in Figure 3.2.

24
t0

50

100

V

Figure 3.2: The optimum volume over time; the pump rate is shown as a dashed line, and the cost
per unit electricity shown as a dotted line.

It is left as an exercise to plug this back into the original functional I [V ] to obtain

I [V ] = 24200

(
−3 +

13

log 5

)
tenths of a penny, a cost of ¿122.87.

You can compare this to the solution which does work at a constant rate, V1 (t) = 100t/24. The

rate of electricity usage is r (u) = 10 +u ≈ 14.17 units per kilotonne. Multiplying this by 100 gives

the number of units used, and multiplying this by the time-averaged cost of a unit (around 12.1p)

gives a cost of approximately ¿171.41. This represents a saving of around 29%.

We will not determine whether or not this is a global minimum here; however, this is a reasonably

tractable problem which you may like to attempt as an exercise.

The above lemmas deal only with the case of �xed endpoints; but in fact the above lemmas can be

used equally well to apply to general periodic problems of the type we saw above. A more interesting

example than these is given by the following:
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Example 3.13. Let g (x) = sin (nx). Minimize

I [u] =

ˆ π

−π

[
1

2

(
(u′)

2
+ u2

)
− gu

]
dx

amongst all smooth 2π-periodic functions u,

u ∈ C∞per ([−π, π])

We have a functional of the above form, with

f (x, u, u′) =
1

2

[
(u′)

2
+ u2

]
− gu

∂f

∂u
= u− g

∂f

∂u′
= u′

We can immediately deduce that the Euler-Lagrange equation is

∂f

∂u
− d

dx

(
∂f

∂u′

)
= u− g − du′

dx

= u− g − u′′

= 0

since boundary terms in the proof of Lemma 3.8 still vanish, and we can trivially modify the φ used

in the proof of Lemma 3.9 to be 2π-periodic - then since any variation on a candidate curve can be

written as u = u0 + tφ where φ is 2π-periodic with arbitrary endpoints, the same arguments hold.

So any minimizing function u0 satis�es

u′′0 − u0 + sin (nx) = 0

We can calculate the general solution of this equation as

u0 = A coshx+B sinhx+
sin (nx)

1 + n2

(which could also be written in terms of ex and e−x). But recall that we must have u ∈ C∞per ([−π, π])

- that is, all solutions u must be periodic. Clearly, no non-trivial linear combination of coshx and

sinhx can be periodic (you can prove this as a quick exercise; see the note at the end of this example

for another method), so in fact the only stationary point of the functional is

u0 =
sin (nx)

1 + n2

Now all that remains is to show that this is indeed a minimum. We can do this very directly,
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as follows:

I [u0 + φ] =

ˆ π

−π

[
1

2

(
(u′0 + φ′)

2
+ (u0 + φ)

2
)
− g (u0 + φ)

]
dx

= I [u0] +

ˆ π

−π
[u′0φ

′ + u0φ− gφ] dx+

ˆ π

−π

1

2

(
φ′2 + φ2

)
dx

Now the �rst of these two integrals is in fact identically zero, by our choice of u0, as can be

shown by integrating the �rst term by parts: we end up integrating (−u′′0 + u− g)φ = 0, and the

boundary terms vanish. Therefore,

I [u0 + φ] = I [u0] +

ˆ π

−π

1

2

(
φ′2 + φ2

)
dx

But the second integral is obviously non-negative, so we have immediately I [u0 + φ] ≥ I [u0].

In fact, for all functions φ ∈ C∞per ([−π, π]) with φ 6≡ 0, the last term is strictly positive, so that

I [u0 + φ] > I [u0]. Therefore,

u0 =
sin (nx)

1 + n2

is a strict global minimizer for I.

An alternative and more general way to show that u0 is the only smooth, 2π-periodic solution of

the equation of the above di�erential equation is to consider another solution v, and form w = u0−v.
Then clearly w is a 2π-periodic function satisfying the now homogeneous equation w′′ − w = 0.

Again, we can simply assert that there is no periodic solution to this; or we can consider

0 =

ˆ π

−π
w (−w′′ + w) dx = − [ww′]

π
−π +

ˆ π

−π

1

2

(
w′2 + w2

)
dx

Here, the boundary terms vanish by the periodicity of w, so the (non-negative) integrand on

the right-hand side must be identically zero: w ≡ w′ ≡ 0. Hence v = u0.

(The complex analyst may like to prove this particular result via an application of Liouville's

theorem, which states that a bounded function which is complex di�erentiable everywhere in C -

an entire function - is constant.)

Remark. You may be curious about the existence of a `direct method' for proving the existence of

solutions to these problems, generalizing the idea of �continuous functions on closed, bounded intervals

attain their bounds�. The direct method in the calculus of variations does exactly this. We will not

discuss this in detail here, because it is essentially an exercise in topology. For proving the existence

of a minimizer, the essential idea is to �rst show that the functional is bounded below, and hence

that there must be functions (un) which tend to the in�mum of the functional's value; then, we show

that there is some subsequence which converges to, unk
→ u0, with respect to some topology on the

function space V ; and �nally, we show that J is su�ciently continuous with respect to this topology,

so that it follows that J (u0) is a minimum value.
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3.3 Multi-Dimensional Euler-Lagrange Equations

The above arguments carry over very well to the case of higher-dimensional integrals, where we have

functionals of the form

I [u] =

ˆ
Ω

f (x, u,∇u) dV

where u = u (x) is a function de�ned on some domain Ω ⊂ Rn, and

∇u =

(
∂u

∂x1
,
∂u

∂x2
, · · · , ∂u

∂xn

)
We are still integrating over a region Ω of values of the independent variable x = (x1, x2, · · · , xn), with

a volume element dV instead of a line element dx.

Remark. Note that f can actually be an arbitrary function of the xi and the ∂u/∂xi by taking dot

(inner) products:

f = f

(
x1, x2, · · · , xn, u,

∂u

∂x1
,
∂u

∂x2
, · · · , ∂u

∂xn

)
The key generalization which needs to be made is that what was integration by parts in one

dimension becomes an application of Green's identities in higher dimensions. This is best introduced

with an example (with origins in physics):

Example 3.14. Consider the functional

I [u] =

ˆ
Ω

(
1

2
|∇u|2 − g (x)u

)
dV

where Ω is some domain in Rn. Then the directional derivative

DφI [u] =
d

dt

∣∣∣∣
t=0

I [u+ tφ]

=
d

dt

∣∣∣∣
t=0

ˆ
Ω

(
1

2
|∇u+ t∇φ|2 − g (x) (u+ tφ)

)
dV

=

ˆ
Ω

(∇u ·∇φ− gφ) dV

=

ˆ
Ω

δI

δu
φdV

so we need to transform the term in ∇φ into a term in φ. To achieve this, recall Green's �rst

identity, which gives ˆ
Ω

∇u ·∇φ dx =

ˆ
∂Ω

φ∇u · dS−
ˆ

Ω

φ∇2udV ]

Assuming that there are �xed boundary conditions, we have φ = 0 on the boundary ∂Ω, and

hence

DφI [u] =

ˆ
Ω

(
−φ∇2u− gφ

)
dV

so that the directional derivative is
δI

δu
= −∇2u− g
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Therefore, carrying over the results from the previous section, we can infer that this is must

zero everywhere for u to be an extremal function: hence Poisson's equation arises: u is the solution

to

∇2u = −g

We can give this a physical interpretation: the �eld u obeying Poisson's equation, for the gravita-

tional potential of a mass distribution proportional to g (x), or the electrostatic potential of a charge

distribution proportional to g (x), will be that which minimizes the associated amount of energy given

by

I [u] =

ˆ
Ω

(
1

2
|∇u|2 − g (x)u

)
dV

More generally, we can have a functional of the form

I [u] =

ˆ
Ω

f (x, u,∇u) dV

and the associated Euler-Lagrange equation is given by

∂f

∂u
−

n∑
j=1

∂

∂xj

[
∂f

∂pj
(x, u,∇u)

]
= 0

and pj = ∂u/∂xj .

(Hamilton's principle states that a system always evolves along a path which makes its action

stationary - most familiar microscopic scale physical laws can be expressed as the Euler-Lagrange

equations of a suitable integral functional.)

Proof. We proceed as before:

DφI [u] =
d

dt

∣∣∣∣
t=0

I [u+ tφ]

=
d

dt

∣∣∣∣
t=0

ˆ
Ω

f (x, u+ tφ,∇u+ t∇φ) dV

=

ˆ
Ω

φ∂f
∂u

+

n∑
j=1

∂f

∂pj

∂φ

∂xj

dV

=

ˆ
Ω

[
φ
∂f

∂u
+ ∇φ · ∂f

∂p

]
dV

=

ˆ
Ω

[
φ
∂f

∂u
− φ∇ · ∂f

∂p

]
dV

=

ˆ
Ω

[
∂f

∂u
−∇ · ∂f

∂p

]
φ dV

where we have adopted the notation ∂f
∂p =

(
· · · , ∂f∂pj , · · ·

)
, and used the fact that φ is 0 at the

boundary.
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It follows, by application of the same sort of methods which we used in the one-dimensional

case, that

∂f

∂u
−∇ · ∂f

∂p
≡ 0

We can apply this directly to the following example of an action for a �eld:

Example 3.15. The action ˆ
R2

1

2

[(
∂u

∂t

)2

−
(
∂x

∂t

)2
]

dxdt

associated with one spatial dimension gives x = (t, x) and p = (ut, ux), so

f =
1

2

(
u2
t − u2

x

)
which has the Euler-Lagrange equation

− ∂

∂t
(ut)−

∂

∂x
(−ux) = −utt + uxx = 0

which is the wave equation.

Remark. In fact, this action is very much like a component of that determining the evolution of the

electromagnetic E and B �elds, which also exhibit this wave-like behaviour in the form of light.

3.4 Constrained Euler-Lagrange Equations

A natural question to ask is whether our techniques for �nding extremal points of functionals can be

generalized to include constraints, as we could in �nite-dimensional vector spaces via the introduction

of Lagrange multipliers. The answer is yes, thanks to the way that the properties of vector spaces are

highly independent of the dimension. We will leave aside the details of showing that this is rigorously

valid, instead illustrating by example how we go about constructing the `augmented functional' and

solving for the extremal function.

3.4.1 Single constraint

Example 3.16. Recall Problem 1.2, that of maximizing the area beneath a curve,

I [y] =

ˆ a

−a
y (x) dx

where we have a �xed length,

J [y] =

ˆ a

−a

√
1 + y′2 dx = L
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We de�ne the augmented functional by

Φ [y, λ] = I [y] + λ (J [y]− L)

=

ˆ a

−a

(
y + λ

√
1 + y′2 − λ L

2a

)
dx

where the constant term is actually going to be irrelevant.

This has the functional derivative, with respect to y, of

δΦ

δy
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 1− d

dx

(
λy′√
1 + y′2

)

It follows, integrating once, that

x− λy′√
1 + y′2

= c

or

y′√
1 + y′2

=
x− c
λ

y′2 =
[(x− c) /λ]

2

1− [(x− c) /λ]
2

Taking square roots and integrating, therefore, we have

ˆ
dy = ±

ˆ
[(x− c) /λ]√

1− [(x− c) /λ]
2

dx

At this point, it is useful to make the substitution x = c+ λ sin θ which gives y = y0 ± λ cos θ.

This implies

(x− c)2
+ (y − y0)

2
= λ2

where the constants may be adjusted to �t the initial conditions and the constraint - it is clear,

however, that the solution is a circle.

Remark. This formulation of the problem forbids shapes which double back on themselves and so

on. The solution to this is to work with curves parametrized by a new variable: we write x (t) =

(x (t) , y (t)), in a way which can be obviously generalized to more dependent variables, and x (t) ∈ Rn.
Then we get integral functionals of the form

´
f (t,x (t) , ẋ (t)) dt. These generate a family of Euler-

Lagrange equations:
∂f

∂xk
− d

dt

(
∂f

∂ẋk

)
= 0 for j = 1, 2, · · · , n

As an aside, we show how these give the same solution:

43



Example 3.17. Find the closed curve x (t) ∈ R2 with maximal area

A =
1

2

ˆ
(xẏ − yẋ) dt

given the �xed length

L =

ˆ (
ẋ2 + ẏ2

) 1
2 dt

This leads to

Φ [x, t] =

ˆ [
1

2
(xẏ − yẋ) + λ

(
ẋ2 + ẏ2

) 1
2

]
dt

The Euler-Lagrange equations are

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
=

1

2
ẏ − d

dt

(
−1

2
y +

λẋ√
ẋ2 + ẏ2

)

= ẏ − λẏ (ẏẍ− ẋÿ)

(ẋ2 + ẏ2)
3
2

=
ẏ
((
ẋ2 + ẏ2

) 3
2 − λ (ẏẍ− ẋÿ)

)
(ẋ2 + ẏ2)

3
2

= 0

and

∂f

∂y
− d

dt

(
∂f

∂ẏ

)
= −1

2
ẋ− d

dt

(
1

2
x+

ẏ√
ẋ2 + ẏ2

)

= ẋ− ẋ (ẋÿ − ẏẍ)

(ẋ2 + ẏ2)
3
2

=
ẋ
(
−
(
ẋ2 + ẏ2

) 3
2 − λ (ẋÿ − ẏẍ)

)
(ẋ2 + ẏ2)

3
2

= 0

Now we can dismiss solutions where ẋ = 0 and ẏ = 0 except at isolated points on geometrical

grounds. This gives us

(
ẋ2 + ẏ2

) 3
2 − λ (ẏẍ− ẋÿ) = 0

−
(
ẋ2 + ẏ2

) 3
2 − λ (ẋÿ − ẏẍ) = 0

which are obviously equivalent to each other. Then we have

(ẏẍ− ẋÿ)

(ẋ2 + ẏ2)
3
2

= λ−1

Now we can integrate this once, by multiplying through by ẏ and then noting the left-hand side

44



is exactly the expression which arose above:

ẋ√
ẋ2 + ẏ2

= λ−1 (y − y0)

Similarly,
ẏ√

ẋ2 + ẏ2
= −λ−1 (x− x0)

Squaring and adding these two equations, we have

1 = λ−2 (y − y0)
2

+ λ−2 (x− x0)
2

λ2 = (x− x0)
2

+ (y − y0)
2

which is still a circle!

Remark. Alternatively, we could have noted that

(ẏẍ− ẋÿ)

(ẋ2 + ẏ2)
3
2

= λ−1

speci�es that the curvature of the curve x (t) is a constant, exactly λ−1, and hence that it is a circle

with radius λ.

3.4.2 Multiple constraints

If there are only �nitely many constraints, we generalize exactly as in the �nite case.

If we have a family of constraints Jα [y] = 0, α = 1, · · · , N , then we construct the functional

Φ = I [y] +
∑
α

λαJα [y]

However, if there are an continuous in�nity of constraints, then we need to construct a `Lagrange

multiplier function'. This is best illustrated with an example from physics.

Example 3.18. In �uid mechanics, the velocity �eld v : R3 → R3 is subject to an in�nite number

of constraints for incompressible �ow,

∇ · v (x) = 0 ∀x

The question is then to minimize

I [v] =

ˆ (
1

2
|∇v|2 − v · f

)
dV

subject to ∇ · v (x) = 0. There is some unusual notation here: we de�ne the gradient of a vector

to be the tensor

∇v =

(
∂vi

∂xj

)
i,j=1,2,3
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where vi are the three components of the v (using the raised index to de�ne a contravariant compo-

nent, since we are de�ning the tensor formally - you may think of them as vi for practical purposes

here). The expression |∇v|2 is used here to denote the sum of the squares of the components of

this tensor:

|∇v|2 =
∑

i,j=1,2,3

(
∂vi

∂xj

)2

=

3∑
i=1

|∇vi|2

We construct the augmented function

Φ [v, λ] =

ˆ (
1

2
|∇v|2 − v · f − λ (x)∇ · v

)
dV

where there is still `one Lagrange multiplier per constraint', in that λ (x) is de�ned for all x ∈ R3.

Now we can apply one of Green's identities to the term λ (x)∇ · v to see

ˆ
Ω

λ∇ · v dx = −
ˆ

Ω

[∇λ] · v dx +

ˆ
∂Ω

λv · dS

Hence if we assume that we have 0 boundary conditions for v, for large |x| for example,

Φ [v, λ] =

ˆ (
1

2
|∇v|2 − v · f + [∇λ (x)] · v

)
dV

Now taking the directional derivative of this, we see

d

dt

∣∣∣∣
t=0

Φ [v + tw, λ] =

ˆ
(∇v : ∇w − f ·w + [∇λ (x)] ·w) dV

where we use the colon to denote summing the products of corresponding cells - this arises because

d

dt

∣∣∣∣
t=0

1

2
|∇v + t∇w|2 =

d

dt

∣∣∣∣
t=0

∑
i,j

1

2

(
∂vi

∂xj
+ t

∂wi

∂xj

)2

=
∑
i,j

∂wi

∂xj

∂vi

∂xj

= ∇v : ∇w

We now rewrite this �rst term, using the Green's identity again, as

ˆ (∑
i

∇vi ·∇wi

)
dx =

ˆ (∑
i

−wi∇2vi

)
dV

Hence

DwΦ =

ˆ (
−∇2v − f + ∇λ

)
·w dV

and thus the Euler-Lagrange equation (really a family of three equations, but we can place them

in one system) can be written as

−∇2v + ∇λ = f
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But since ∇ · v = 0, if we take the divergence of this equation we obtain

∇2λ = ∇ · f

So the �eld v, with ∇ · v = 0, is stationary for I if

−∇2v + ∇λ = f

∇2λ = ∇ · f

Remark. These can be compared to the Navier-Stokes equation, for a time-independent (static) �eld,

without the non-linear terms O
(
|v|2

)
. This gives the above equations, where λ (x) is the pressure.

3.5 Conservation Laws and Noether's Theorem

As already noted, some forms of f lead to special versions of the Euler-Lagrange equation. These

special cases are in fact of value to us, as we shall see in section 2.5.3. For now, however, we will

simply note the two key results.

Let y be a solution of

fy −
d

dx
(fy′) = 0

Theorem 3.19.

(i) If f = f (x, y′) has no y-dependence, then

fy′ = constant

(ii) If f = f (y, y′) has no x-dependence, then

y′fy′ − f = constant

These two results state conserved quantities when the functional is independent of some property

of the system: we call this invariance a symmetry. The laws above are conservation laws.

Proof.

(i) This part is trivial: fy = 0 so

d

dx
(fy′) = 0

fy′ = constant
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(ii) This is more involved, but easily deduced from working backwards, and using the chain rule:

d

dx
[y′fy′ − f ] = y′′fy′ + y′

d

dx
(fy′)−

df

dx

= y′′fy′ + y′
d

dx
(fy′)− y′fy − y′′fy′

= y′
[

d

dx
(fy′)− fy

]
= 0

This shows that in general, when the integrand has some symmetry (which corresponds to indepen-

dence from some type of coordinate), the solution has a symmetry also. This is particularly relevant

in physics; as mentioned above, this will be brie�y discussed in section 2.5.3.

Note that the argument made in the latter conservation law actually gives rise to an alternative

expression of the Euler-Lagrange equation:

d

dx
[y′fy′ − f ] = 0− fx

d

dx
[y′fy′ − f ] + fx = 0

which is the Beltrami identity. As we shall see below, it is signi�cant that the term which is di�eren-

tiated is actually the Legendre transform of f with respect to y′, if f is a convex function of y′ - this

is because we de�ne the Hamiltonian as the Legendre transform of the Lagrangian, so Lagrangians

which do not depend on the independent coordinate (namely the time t, confusingly represented by x

above) give rise to constant Hamiltonians, dH/dt = 0 - so energy conservation is a consequence of the

time-invariance of physical laws.

3.6 Scienti�c Applications

Laws of nature can often be expressed in terms of the minimization (or more generally making sta-

tionary) of some quantity.

3.6.1 Fermat's Principle

Light, in the absence of changing density or an interacting �eld, is well-known to travel in straight lines.

It is also well-known that when light re�ects o� a boundary, the angles of incidence and re�ection,

measured from the normal of the surface at the point of re�ection, are both equal: θi = θr. One

way of expressing the �rst fact is with the postulate that light always takes the shortest path possible

between two points (assuming it moves between them at all). This does not quite square with the

second fact though: if the light moves between (x1, y) and (x2, y), then re�ecting o� a horizontal

boundary is obviously not the shortest route. However, assuming that light travels in straight lines

unless it interacts with a medium, note that the route of re�ecting o� the boundary at the point with
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x-coordinate (x1 + x2) /2 actually is a local minimum for the possible distance taken: given paths

(x1, y) (x2, y) striking the boundary at one point (a, 0), the time taken is

T (a) =
1

c

([
(x1 − a)

2
+ y2

]1/2
+
[
(x2 − a)

2
+ y2

]1/2)
and

T ′ (a) =
x1 − a[

(x1 − a)
2

+ y2
]1/2 +

x2 − a[
(x2 − a)

2
+ y2

]1/2
which is zero precisely when sin θi = sin θr, as can be shown with a suitable substitution, noting that

x1 < a < x2.

This principle, Fermat's principle, is in fact perfectly general.

Example 3.20. Consider light, in two dimensions, passing through an inhomogeneous medium

where the speed of light is a function of y: c = c (y). Then given a path which can be parametrized

by y = y (x), the time taken for light to follow that path is

T =

ˆ b

a

√
1 + y′2

c (y)
dx

=

ˆ b

a

f (y, y′) dx

Therefore a su�ciently di�erentiable minimizing path would necessarily satisfy

fy −
d

dx
(fy′) = 0

which can then be solved for the path taken by the light.

3.6.2 Lagrangian mechanics

One striking class of applications of �nding extremal functions for a functional comes from the ability

to encode virtually every fundamental classical physics laws in terms of a correctly chosen action.

In elementary mechanics, for a particle moving in a time-independent potential V (x) we have a

force F = −∇V (x), and an equation of motion

m
d2x

dt2
= −∇V (x)

We can derive this as the Euler-Lagrange equation for the action

S [x] =

ˆ [
1

2
m |ẋ|2 − V (x)

]
dt

=

ˆ
L (x, ẋ) dt

where L is the Lagrangian we de�ned in section 2.28, equal to the kinetic energy minus the potential
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energy. This is because
∂f

∂xi
− d

dt

(
∂f

∂ẋi

)
= − ∂V

∂xi
− d

dt
(mẋi) = 0

so

m
d2x

dt2
= −∇V

Recall from section 3.5 that if the integrand, here the Lagrangian L, has some symmetry, then this

should be re�ected by a conservation law for some property of the physical system:

• If V is independent of x (which is equivalent to saying that there is no force F), then the conserved

quantity is clearly
∂f

∂ẋi
= mẋi

which is otherwise known as momentum. This is one way of thinking about Newton's �rst law.

• Since V is independent of time, we necessarily have

ẋ · ∂L
∂ẋ
− L = ẋ ·mẋ−

(
1

2
m |ẋ|2 − V (x)

)
=

1

2
m |ẋ|2 + V (x)

= constant

which is the statement of the conservation of energy.

If we wrote L to include rotational coordinates, we could also deduce the conservation of angular

momentum from the independence of the potential on these angles.

A generalization of the second observation comes from recalling that the Hamiltonian H is de�ned

as the Legendre transform8 of L with respect to ẋ:

H = p · ẋ− L (x, ẋ)

where p is the conjugate momentum, given by

p =
∂L
∂ẋ

That is,

H = ẋ · ∂L
∂ẋ
− L = constant

Remark. Forces which are derived as approximations, like friction, which arises only at the macroscopic

scale as the average e�ect of complicated electromagnetic interactions, cannot usually be described in

this way. However, as we have seen above, even the evolution of �elds can be expressed in this way.

All of Maxwell's equations can be readily deduced from a single action.

One of the most important applications of Lagrangian mechanics, and the action principle, is to

quantum mechanics.

8Note the de�nition given is actually only that of the Legendre transform if L is convex in ẋ.

50



3.6.3 Geodesics

De�nition 3.21. A geodesic is a locally length-minimizing curve - a curve of least length, or more

generally a stationary point for the length

L =

ˆ
ds

where s is the arclength.

Remark. By `locally length minimizing', we mean that any su�ciently small variation on the line will

increase its length.

In the Euclidean plane, we have already seen (in Example 3.11) that a path between (a, α) and

(b, β) minimizing the length is a straight line. In fact, this is the only stationary point; at the time,

we only saw this for curves which can be parametrized as y = y (x), so that the length is

L =

ˆ b

a

√
1 + y′2dx

We have since shown how a curve can be parametrized by a new coordinate to derive a more general

result, in Example 3.17. This is the approach we will adopt here.

Example 3.22. Consider the length of a parametrized curve x (t),

L [x] =

ˆ b

a

‖ẋ‖dt

We can easily analyze this because the integrand is independent of the components of x - the

Euler-Lagrange equation can immediately be integrated once, so

∂f

∂ẋj
=

ẋj(∑
ẋ2
j

)1/2 = constant

and hence
d

dt

(
ẋ

‖ẋ‖

)
= 0

so that the direction taken is constant, though `speed' may vary.

In fact, since

L =

ˆ ∑
j

(
dxj
dt

)2
1/2

dt

=

ˆ ∑
j

(
dxj
dτ

)2
1/2

dτ

for any change of variables τ = τ (t) where τ ′ (t) > 0, we can rescale the parameter arbitrarily.
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This means it is simplest to choose the parameter τ such that the speed∑
j

(
dxj
dτ

)1/2

= constant

which means τ is proportional to arclength.

Using this parametrization, geodesics are curves which make stationary

I [x] =

ˆ
1

2
‖ẋ‖2 dt =

ˆ
{kinetic energy} dt

which is actually an equivalent de�nition for the multiple of arclength parametrization

The Euler-Lagrange equation becomes

ẍ = 0, i.e. ẋ = constant

Note that this is all exactly the same as the mechanics example, with m = 1 and V = 0. This

shows some of the generality of the method. The above equation states that geodesics are the paths

followed by non-accelerating particles.

This method can be generalized to very di�erent spaces in order to �nd geodesics on them. For an

example, we will see two ways of �nding the geodesic curves on a cylinder

C =
{

(x, y, z) : x2 + y2 = R2,−∞ < z <∞
}

Example 3.23. Firstly, recall that we can convert from cylindrical coordinates to Cartesian coor-

dinates via

x = R cos θ y = R sin θ z = z

where in this case, R is �xed, and θ and z are the two variable coordinates. We will therefore

parametrize our path by t, so that θ = θ (t) and z = z (t).

Now the `speed squared' is given by

‖ẋ‖2 =

(
ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

But we can write this in terms of the cylindrical coordinates:

‖ẋ‖2 =
(
−R sin (θ) θ̇

)2

+
(
R cos (θ) θ̇

)2

+ ż2

= R2θ̇2 + z2

Now according to the same theory we developed for a free Cartesian space, a geodesic curve on

C is a curve

x (t) = (R cos θ (t) , R sin θ (t) , z (t))
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which makes stationary

I [x] =
1

2

ˆ (
R2θ̇2 + ż2

)
dt

This gives Euler-Lagrange equations for both variables:

δI

δθ
= 0− d

dt

(
θ̇R2

)
= 0

δI

δz
= 0− d

dt
(ż) = 0

which respectively give

θ̇ = const

ż = const

Hence the geodesic curves are helicoidal curves, which rotate about the cylinder at a constant

rate, whilst moving upwards at a constant rate. (Or at least, when we constrain the particle to

move at a constant speed, the rate of change of the angle and vertical ascent are both constant.)

Note that whilst all helicoidal curves are stationary points, they are not all minima.

The second solution we give treats this as a constraint problem, rather than as a parametrization

problem. (Recall we initially derived the ideas behind Lagrange multipliers from a parametrization of

the constrained domain.)

Example 3.24. The relevant constraint is

g (x, y) = x2 + y2 −R2 = 0

In fact, because this constraint must apply at every point on the path, this corresponds to an

in�nite set of constraints: hence we need an in�nite number of multipliers, which can be denoted

by λ (t).

Then we form

Φ [x, λ] =

ˆ (
1

2
‖ẋ‖2 − λ (t)

[
x2 + y2 −R2

])
dt

=

ˆ (
1

2

[
ẋ2 + ẏ2 + ż2

]
− λ (t)

[
x2 + y2 −R2

])
dt

The associated equations are then

−2λx− d

dt
(ẋ) = 0 ⇐⇒ ẍ+ 2λx = 0

−2λy − d

dt
(ẏ) = 0 ⇐⇒ ÿ + 2λy = 0

0− d

dt
(ż) = 0 ⇐⇒ ż = constant
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Now if λ (t) ≥ 0 is constant, then x and y are both harmonic oscillators, though they are not

independent, since we have the constraint x2 + y2 −R2 = 0. Without assuming anything about λ,

we can di�erentiate this twice, giving

xẋ+ yẏ = 0

xẍ+ yÿ + ẋ2 + ẏ2 = 0

Then to �nd λ (t), we can use the Euler-Lagrange equations: ẍ = −2λx and ÿ = −2λy so

−2λx2 − 2λy2 + ẋ2 + ẏ2 = 0

2λR2 = ẋ2 + ẏ2

which gives us

λ (t) =
1

2R2

(
ẋ2 + ẏ2

)
≥ 0

Now writing ω (t) =
√

2λ ∈ R we have

ẍ+ ω2x = 0, ÿ + ω2y = 0

Now we can use this to write

xẋ+ yẏ = 0
1

ω2
[ẍẋ+ ÿẏ] = 0

ẋ2 + ẏ2 = constant

where in the last step, we multiplied by 2ω2 and integrated. It follows that λ and hence ω are both

constant. Hence the solutions may be written as

x = R cos (ωt+ α)

y = ±R sin (ωt+ α)

z = at+ b

These methods for �nding geodesics can be readily generalized to more abstract spaces (manifolds),

so long as one takes care to de�ne all the terms correctly.

3.6.4 Brachistochrone problem

One of the classic problems in the calculus of variations is to �nd the curve y (x) such that a bead

moving under gravity along a frictionless wire described by y (x) takes the shortest possible time to fall

from rest at (0, 0) to (X,Y ). This is called the brachistochrone problem, from the Greek for `shortest

time'.
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Measuring y downwards, so that Y > 0, the speed of the particle v =
(
ẋ2 + ẏ2

)1/2
must satisfy

1

2
mv2 = mgy

by conservation of energy, from which it follows that

v =
√

2gy

Then the functional describing the time taken is

I [y] =

ˆ
ds

u
=

ˆ (
ẋ2 + ẏ2

)1/2
√

2gy
dt

=
1√
2g

ˆ X

0

(
1 + y′2

)1/2
√
y

dx

The associated Euler-Lagrange equation is clearly a very unpleasant a�air if expanded directly.

However, we can save ourselves some time using the conservation law for integrands independent of x:

y′fy′ − f =
y′2√

y (1 + y′2)
−
√

(1 + y′2)
√
y

= C

This implies that

y′2 −
(
1 + y′2

)
= C

√
y (1 + y′2)

1 = C2y
(
1 + y′2

)
which we can rearrange and attempt to integrate:

ˆ
y1/2dy

(1− c2y)
1/2

=
1

c

ˆ
dx =

x

c

Let u = y1/2. Then we have dy/du = 2u, so

ˆ
y1/2dy

(1− c2y)
1/2

=

ˆ
2u2du

(1− c2u2)
1/2

which you might recognize as being most readily solved with a substitution like u = 1
c sin θ

2 . In fact,

substituting y = 1
c2 sin2 θ

2 into the original formula gives dy/dθ = 1
c2 sin θ

2 cos θ2 and hence

ˆ
y1/2dy

(1− c2y)
1/2

=

ˆ 1
c sin θ

2 ·
1
c2 sin θ

2 cos θ2dθ

cos θ2

= c−3

ˆ
sin2 θ

2
dθ

=
1

2c3
(θ − sin θ)
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Hence we have

y =
1

c2
sin2 θ

2
=

1

2c2
(1− cos θ)

x =
1

2c2
(θ − sin θ)

which is precisely the parametrized equation of a cycloid, the curve traced out by a point on the

boundary of a rolling wheel. Note this is independent from the mass or gravitational �eld. It turns out

that there is exactly one cycloid which passes through (0, 0) and (X,Y ) with Y ≥ 0 such that there

are no maxima on the curve between the two points, and which passes through (0, 0) with an in�nite

gradient.

3.7 The Second Variation

One �nal natural extension to the ideas we have developed in the calculus of variations is to consider

the second term in the Taylor expansion of I [y] - we can develop a way for testing whether a solution

of the Euler-Lagrange equations is a (global) minimizer of

I [y] =

ˆ b

a

f (x, y, y′) dx

In general, there are two possible approaches:

• Use properties of the function f : recall we used the convexity of f (y′) in Example 3.11, where

we showed that straight line was the geodesic in the Euclidean plane.

• Look for the second-order term in the Taylor expansion of I [y], and generalize the condition

f ′′ (x) > 0.

Of course, the second method does not necessarily guarantee us a global minimum - we can only

calculate all minima and �nd the smallest, possibly taking advantage of the shape of the functional.

However, it is worth developing this theory.

Recall that for a function h ∈ C2 (Rn), Taylor's theorem tells us that for any ε > 0 there is a δ > 0

such that ∣∣∣∣∣∣h (x + δx)− h (x)−∇h (x) · δx− 1

2

n∑
i,j=1

∂2h

∂xi∂xj
δxiδxj

∣∣∣∣∣∣ ≤ ε ‖δx‖2
for all ‖δx‖ < δ. Then it follows that

(i) if ∇h (x) = 0, and

Aij =
∂2h

∂xi∂xj

∣∣∣∣
x

is a positive de�nite matrix, then

h (x + δx) > h (x)

for all non-zero δx which are su�ciently small: hence x is a strict local minimum.

(ii) if x is a local minimum, then ∇h (x) = 0, and Aij is positive semi-de�nite.
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To extend this to a functional I [y], let φ be a smooth, or more generally C1, function, with φ (a) =

φ (b) = 0. Here, φ corresponds to δx. Then assuming as ever that f is su�ciently di�erentiable,

f (x, y + φ, y′ + φ′) = f (x, y, y′) + φfy + φ′fy′

+
1

2

[
φ2fyy + 2φφ′fyy′ + φ′2fy′y′

]
+O

(
[|φ|+ |φ′|]3

)
where all terms in f on the right-hand side are evaluated at (x, y, y′).

Then for all ε > 0, there is some δ > 0 such that the remainder is

O
(
ε
(
|φ|2 + |φ′|2

))
whenever

max
[a,b]

(|φ|+ |φ′|) < δ

In this case, it is clear that

I [y + φ] = I [y] +DφI [y] +
1

2
D2I [y] +O

(
ε

ˆ b

a

(
|φ|2 + |φ′|2

)
dx

)

where DφI [y] is the �rst variation and D2I [y] is the second variation:

D2I [y] =

ˆ b

a

[
φ2fyy + 2φφ′fyy′ + φ′2fy′y′

]
dx

3.7.1 Weak extrema

It is important to note the dependence on |φ′| of the error term in the above expansion; this is a very

di�erent feature to anything we have encountered before. We need to formalize our notions of what

precisely a `small' variation is:

De�nition 3.25. Write

|φ|C1 = max
[a,b]

(|φ|+ |φ′|)

A curve y ∈ C1 is a weak local minimum for I [y] if I [y + φ] ≥ I [y] for |φ|C1 su�ciently small.

The curve y is a strict weak local minimum if the inequality is strict whenever φ 6≡ 0.

The weak terminology refers to the restriction that we have placed on |φ′| - a weak local minimum

might not be a minimum with respect to variations with steep gradients.

However, weakening the de�nition in this way allows us to state the following theorem:

Theorem 3.26.
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(i) If DφI [y] = 0 and D2I [y] ≥ c
´ b
a

(
φ2 + φ′2

)
dx for some c > 0, then y is a strict weak local

minimum for I.

(ii) If y is a weak local minimum for I, then DφI [y] = 0 and D2I [y] ≥ 0.

Remark. Note that we have had to weaken the condition for a strict weak local minimum also, to

require a strictly positive lower bound on D2I [y] /
´ b
a

(
φ2 + φ′2

)
dx - heuristically, this is because if we

can �nd variations of a �xed magnitude (with respect to some norm) but for which D2I [y] tends to 0,

we cannot be certain that higher-order in the terms will not come to dominate the second-order term.

It is important to note that function spaces are in�nite dimensional vector spaces, with various

norms which are not equivalent. (All Euclidean norms for �nite dimensions are essentially the same.)

A (strict) strong local minimum obeys the same inequalities as above, but for φ close to zero with

respect to the supremum or in�nity norm on V , sup |y (x)|, rather than a norm like

r∑
k=1

sup
∣∣∣y(k) (x)

∣∣∣
or like the one above, where the sum and absolute value supremum are interchanged.

For an example of the application of this theory, consider the following functionals:

Example 3.27. Let

I± [y] =

ˆ 1

0

(
1

2
y′2 ± 5y2 + y3

)
dx

Find and classify a stationary curve for each which satis�es y (0) = y (1) = 0.

These have the Euler-Lagrange equation

±10y + 3y2 − d

dx
(y′) = 0

−y′′ ± 10y + 3y2 = 0

One solution to this is simply y0 = 0. Then you may easily check that

1

2

[
φ2fyy + 2φφ′fyy′ + φ′2fy′y′

]
=

1

2

[
φ2 (±10 + 6y0) + φ′2

]
=

1

2

[
φ′2 ± 10φ2

]
Now for the functional I+ [y], we have a second variation of

ˆ 1

0

(
φ′2 + 10φ2

)
dx

which is strictly positive, and satis�es the above condition with c = 1: hence for I+, y0 = 0 is a

strict weak local minimum.
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For I− [y], however, we have ˆ 1

0

(
φ′2 − 10φ2

)
dx

and trying φ (x) = sinπx with φ′ (x) = π cosπx we see that this gives

ˆ 1

0

(
π2 cos2 πx− 10 sin2 πx

)
dx =

π2

2
− 10

2
< 0

This y0 is not a weak local minimum for I−.

Remark. * Sometimes, if investigating general second variations thoroughly, it may be necessary to

relate the `size' of the derivative φ′ to that of φ in some way - otherwise, comparing the magnitude of

D2I to something like
´ b
a

(
|φ|2 + |φ′|2

)
dx may be di�cult. This can be done using some special cases

of the Poincaré inequality, which gives a very general stating that the derivative of a function `cannot

be too small'. In particular, for any function φ which is C1 on some interval [a, b] we obtain:

if φ (a) = 0 :

ˆ b

a

φ (x)
2

dx ≤ (b− a)
2

2

ˆ b

a

φ′ (x)
2

dx

if φ (a) = φ (b) = 0 :

ˆ b

a

φ (x)
2

dx ≤ (b− a)
2

8

ˆ b

a

φ′ (x)
2

dx

You may like to try to prove these results.

3.7.2 * Sturm-Liouville theory

In general, there is a wide class of problems involving expressions of the form

ˆ b

a

(
P (x)φ′2 +Q (x)φ2

)
dx

where φ must satisfy φ (a) = φ (b) = 0 - in fact, it can be straightforwardly shown by integrating by

parts and applying these boundary conditions, that

D2I [y] =

ˆ b

a

[
φ2fyy + 2φφ′fyy′ + φ′2fy′y′

]
dx =

ˆ b

a

(
P (x)φ′2 +Q (x)φ2

)
dx

for some suitable choice of the functions P and Q.

The key idea is that we want to consider the e�ect of all possible variations φ - but it far simpler,

as we have noted previously, to work with all `directions' in which variations can be made: that is,
d
dtI [y + tφ (x)] for �xed φ. Once more referring to our previous work in �nite dimensional situations,

where we took partial derivatives along the axes, it is easier to try and investigate behaviour along the

vectors of a basis for the space of all variations - if the second variation is bounded below9 by some

c > 0 `along all the axes' then the second variation is everywhere positive and bounded below by c.

9As mentioned above, this ensures there is not a collection of variations of some �xed magnitude but for which the
second variation is arbitrarily small - this could conceivably result, for example, in higher-order terms dominating the
expansion for I [y + tφ].

59



More accurately, if we �nd a set of normalized basis vectors and the e�ect of D2I along each is to

increase the value of I upwards.

There are many suitable bases. This is analogous, for example, to �nding the eigenvalues of a linear

operator like the Hessian matrix

Aij =
∂2f

∂xi∂xj

with a complete eigenbasis - we do not in fact even need to work out the basis explicitly in this case,

since e.g. knowing all the eigenvalues of A are positive tells us that the result of moving along any

vector in the basis increases the value of f . When we de�ned a positive de�nite matrix A, we stated

that vTAv > 0 for all non-zero vectors v - in terms of the eigenvalues, it is easy to verify that

λmin |v|2 ≤ vTAv ≤ λmax |v|2

where λmin, λmax are the smallest and largest eigenvalues respectively. We might equivalently write

vTAv

|v|2
∈ [λmin, λmax] ∀v 6= 0 or vTAv ∈ [λmin, λmax] ∀v : |v| = 1

One important aspect to notice is that, in fact, as we vary the directional vector v, this ratio has

stationary points at each eigenvector (a good �nite-dimensional optimization exercise) - and the ratio

is precisely the eigenvalue at this point. In particular, therefore, the minimum and maximum values

of this ratio are exactly λmin and λmax, and could be found by considering this as an extremizing

problem.

So for our in�nite-dimensional variational problem, we could attempt to �nd stationary points of

the ratio of the directional second deritvative D2I [y] to M [φ] =
´ b
a
R (x)φ (x)

2
dx, or equivalently

(also a useful exercise) where M [φ] = C is �xed at some arbitrary value. Here, M [φ] is giving a

quantity analogous to the size of the vector displacement v; R (x) is called a weight function, and

allows for some needed �exibility as discussed in the Methods course - it corresponds to tweaking the

relative importance of basis vectors in �nite dimensions. We will take R = 1 here. Hence we wish to

investigate stationary points of

D2I

M
=

´ b
a

(
P (x)φ′2 +Q (x)φ2

)
dx´ b

a
φ (x)

2
dx

Associated to this is an Euler-Lagrange equation, with one constraint corresponding to the multi-

plier λ:

L [φ]
def
= − d

dx
(Pφ′) +Qφ = λφ

This in fact has the special form of a so-called Sturm-Liouville eigenvalue problem (the theory of which

is developed in the Methods course) - we have de�ned a Sturm-Liouville operator L [φ].

This type of operator has an in�nite sequence of typically discrete eigenvalues given by the λn in

Lφn = λnφn
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(these functions arise as the family of solutions to the variational problem) and we get a condition

similar to that for a minimum if λn ≥ c > 0 for all n, since then

D2I ≥ c
ˆ b

a

φ (x)
2

dx

Of course, one cannot immediately relate this to the quantity

ˆ b

a

(
φ2 + φ′2

)
dx

so this is not always very useful.
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